# La Référence.

Le magazine suisse de métrologie

Nº 02 | 2025



Cent-cinquantenaire de la Convention du Mètre « À tous les temps, à tous les peuples »

Page 12 →

Mesure des microéléments et des macroéléments contenus dans les substituts du lait et de la viande Page 24 →

Pour des mesures fiables en médecine nucléaire





#### Impressum

Institut fédéral de métrologie METAS Lindenweg 50, 3003 Berne-Wabern, Suisse Tél. +41 58 387 01 11

#### Rédacteur en chef

Xavier Rappo kommunikation@metas.ch

#### Membres du comité de rédaction

Sören Fricke Hugo Lehmann Lena Märki Jürg Niederhauser

#### Versions linguistiques

Paraît en allemand, en français et en anglais (en ligne)

Crédits photographiques METAS, Getty Images (p. 5), Wikipedia (p. 5), Alcosuisse SA (p. 22), Shutterstock (p. 26), Science et jeunesse (p. 32)

#### Conception

Casalini Werbeagentur AG

#### Copyright © 2025

Institut fédéral de métrologie METAS, Berne La reproduction d'articles avec mention de la source est autorisée. Veuillez envoyer un exemplaire à l'adresse de la rédaction.

2500 exemplaires en allemand 900 exemplaires en français Anglais en ligne

#### Impression

Galledia AG, Flawil galledia.ch

ISSN 2813-9062 (français imprimé) ISSN 2813-9070 (français en ligne)

#### Page de titre

Médaille commémorative du cent-cinquantenaire de la Convention du Mètre et de la création du Bureau international des poids et mesures (BIPM) (1875-2025).





#### Contenu



- 4 Cent-cinquantenaire de la Convention du Mètre «À tous les temps, à tous les peuples»
- 8 Un siècle de mécanique quantique, ou quand l'inconcevable devient indispensable
- 12 Mesure des microéléments et des macroéléments contenus dans les substituts du lait et de la viande

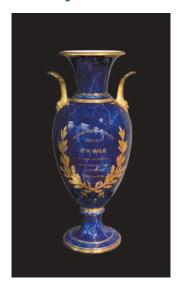




#### Éditorial

#### Chère lectrice, cher lecteur,

Il y a 150 ans, les représentants de 17 nations, parmi lesquelles la Suisse, signaient la Convention du Mètre à Paris. Non seulement ce fut l'acte fondateur du Bureau international des poids et mesures (BIPM), mais il s'agissait également de la création d'une des toutes premières organisations intergouvernementales.


Cette convention a permis aux États signataires de s'affranchir de la grande hétérogénéité des références anthropométriques par le passage à des unités basées sur la nature. Le dernier jalon de cette évolution fut la redéfinition du Système international d'unités (SI) en 2019. Depuis, les unités de mesure sont entièrement dématérialisées. Aujourd'hui, il est théoriquement possible de reproduire un mètre ou un kilogramme dans n'importe quel endroit de l'univers.

Par son objectif d'uniformité et d'universalité, la métrologie internationale favorise l'entente et la paix entre les peuples. De fait, l'action fédératrice du SI et des valeurs de la métrologie est un formidable antidote aux tensions géopolitiques.

Dans ce numéro vous découvrirez notamment comment la Convention du Mètre a influencé et influence encore la métrologie. Bonne découverte!

D' Philippe Richard Directeur Institut fédéral de métrologie METAS

#### 17 Objet



<sup>18</sup> L'histoire du mètre en Suisse



20 Analyses d'éthanol à METAS



24 Pour des mesures fiables en médecine nucléaire

#### 28 Interview

Les deux nouveaux visages de la division Physique

32 En bref



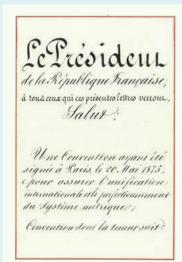
34 Authentification à deux facteurs sur la plateforme web



Parmi les premiers traités internationaux de l'histoire, la Convention internationale du Mètre marque en quelque sorte l'acte de naissance de la métrologie moderne. À l'origine de la création du Système international d'unités (SI), elle constitue aujourd'hui la base contraignante dans le monde entier. On lui doit par ailleurs la création d'une infrastructure métrologique harmonisée à l'échelle internationale.

#### D<sup>r</sup> Jürg Niederhauser

Un kilogramme fait partout un kilogramme: une constatation apparemment banale, du moins de nos jours. Tout comme il est normal aujourd'hui qu'une entreprise qui commande des composants à des fournisseurs de différents pays les reçoive dans les dimensions et avec l'exactitude requises. Nous devons cette évidence au développement du Système international d'unités (SI), la base métrologique contraignante à l'échelle mondiale.


#### Le corps humain comme référence

L'être humain mesure depuis toujours. Nos ancêtres utilisaient par exemple des unités de comparaison fondées sur des récipients (fût, sac, etc.). Mais les hommes se sont aussi pris eux-mêmes comme étalon de comparaison. De nombreuses unités de mesure viennent en effet du corps, comme la palme (longueur d'une main avec les doigts écartés), le pouce, le yard, la coudée ou le pied.

Les mesures étaient avant tout une affaire régionale, et il en allait de même pour la définition des unités de mesure. Celles dérivées du corps humain étaient souvent calquées sur la taille des parties du corps du souverain local. Or, la constitution physique des êtres humains peut varier considérablement. Au fil du temps, une multitude d'unités de mesure ont donc fini par coexister. Elles variaient d'une principauté à l'autre, parfois même d'une ville à l'autre. Un même nom d'unité de mesure pouvait ainsi renvoyer en pratique à des grandeurs différentes selon la région dans laquelle on se trouvait. Le pied, bien qu'assez répandu, ne mesurait de loin pas la même longueur partout. À l'aube du XIXe siècle, sur le territoire de l'Allemagne actuelle, il existait encore des douzaines de mesures différentes du pied.



Le mètre du Comité et le kilogramme du Comité permirent, dès 1800, de diffuser le système métrique. Ci-contre le mètre du Comité et le kilogramme du Comité attribués à la Suisse (des copies en fonte du « mètre des archives » et du « kilogramme des archives »). Ci-dessus, une partie de la boîte du mètre du Comité.

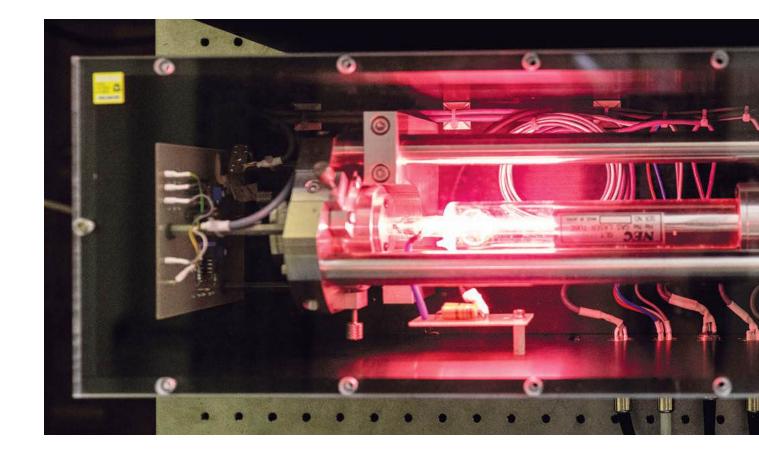




Le début du préambule à la Convention du Mètre (à gauche). Ci-dessus: étalons d'anciennes longueurs dans le passage de la Zytglogge à Berne.

#### La Terre comme unité de mesure

Au XVIIIe siècle, avec les progrès scientifiques et techniques et l'extension des relations commerciales, l'hétérogénéité des unités de mesure était de plus en plus perçue comme un obstacle. Au lieu des milliers de masses et de poids différents, il fallait pouvoir s'appuyer sur un seul système.


En 1790, l'Assemblée nationale française décida le développement d'une nouvelle unité de longueur uniforme. On songea à un système de poids et de mesures uniforme basé sur le système décimal: le système métrique. Cette fois, l'unité de longueur ne devait plus être fondée sur le corps humain, ni sur quelque référence locale ou nationale, mais sur la Terre même. En mars 1791, une commission scientifique, menée notamment par le physicien Pierre-Simon Laplace et les mathématiciens Joseph-Louis Lagrange et Antoine de Condorcet, proposa de

définir la nouvelle unité de longueur, le mètre, comme le dix millionième d'un quart de la circonférence de la Terre sur un méridien, c'est-à-dire la distance qui sépare le pôle Nord et l'équateur divisée par dix millions. Dans la foulée, les astronomes Pierre François André Méchain et Jean Baptiste Joseph Delambre se mirent à mesurer aussi précisément





Les astronomes Jean Baptiste Joseph Delambre (à gauche) et Pierre François André Méchain (portraits de 1792).



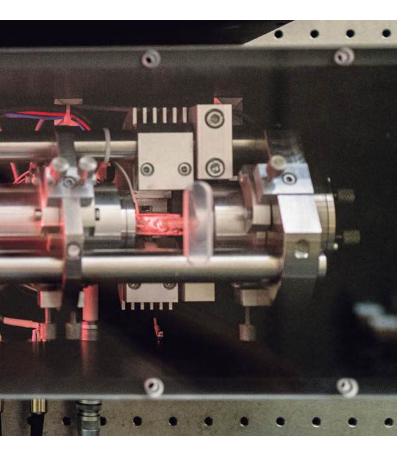
que possible une partie de ce quart de cercle, soit la distance Dunkerque-Paris-Barcelone, afin de déterminer la nouvelle unité de longueur. Leurs travaux durèrent pas moins de sept ans, en raison notamment de la situation chaotique et des conflits armés pendant la Révolutuion française. En 1799, sur la base de leurs résultats validés par une commission internationale, on put établir une mesure de référence pour le mètre: le « mètre des archives » en platine, dédié « à tous les temps, à tous les peuples ».

#### Les besoins de la révolution industrielle

À partir du «mètre des archives» et du « kilogramme des archives», on réalisa des copies en fonte appelées « mètre du Comité» et « kilogramme du Comité». Dès 1800, le système métrique se répandit progressivement dans les pays voisins de la France et dans d'autres États. Dans certains cas, les anciennes unités de mesure continuèrent à exister légalement à côté des unités métriques, car le choix d'une unité ou de l'autre suscitait de vifs débats politiques.

Au cours de l'industrialisation croissante et de l'expansion du commerce international, la coexistence de plusieurs unités de mesure était de plus en plus perçue comme une entrave au développement du commerce. Par conséquent, l'uniformisation des systèmes de mesure devint une des priorités en matière de politique économique. De meilleures mesures de référence pour les nouvelles unités devinrent incontournables, ce qui encouragea les États, malgré leurs différences, à harmoniser leurs unités de mesure et à créer de nouvelles références au cours de la seconde moitié du XIX° siècle.

#### La Convention internationale du Mètre


Une étape décisive a été franchie avec la Commission internationale du Mètre, qui s'est réunie à Paris à l'automne 1872, et qui, jetant les bases de la Conférence diplomatique du Mètre, a culminé dans la signature de la Convention du Mètre le 20 mai 1875. Cette convention, signée par 17 États fondateurs, dont la Suisse et les États-Unis, compte aujourd'hui 64 États signataires et 37 États associés.

La Convention du Mètre est l'un des tout premiers traités de droit public international, ce qui souligne également l'importance d'unités de mesure uniformes et réglementées.

Elle a en outre permis la création du Bureau International des Poids et Mesures (BIPM), financé conjointement par les États signataires.

En 1889, les nouvelles mesures de référence pour l'unité de longueur et l'unité de masse ont été finalisées et validées. La mesure de référence n° 1 est conservée au BIPM comme prototype faisant auto-

La référence actuelle du mètre, réalisée en laboratoire à l'aide d'un laser hélium-néon.



rité pour l'unité correspondante (prototype international du mètre/mètre étalon et prototype international du kilogramme/kilogramme étalon). Des copies de ces prototypes internationaux ont été tirées au sort et distribuées aux États signataires. La Suisse a reçu la copie n° 2 du mètre étalon et la copie n° 38 du kilogramme étalon.

La Convention du Mètre a notamment permis la création d'une infrastructure métrologique harmonisée: à l'échelle internationale, les organes de la Convention du Mètre, en particulier le BIPM, et, au plan national, les instituts nationaux de métrologie, qui assurent l'exactitude des mesures dans les différents pays. En Suisse, c'est METAS qui joue ce rôle. La collaboration entre les instituts nationaux de métrologie et les organes de la Convention internationale du Mètre permet de garantir que les unités de référence d'un État soient reconnues sur le plan international et qu'elles soient disponibles avec l'exactitude requise.

#### En évolution constante

L'objectif de la Convention du Mètre est déjà précisé dans le préambule: «Désirant assurer l'unification internationale et le perfectionnement du système métrique [...] ». Il ne s'agit donc pas seulement d'établir un système d'unités internationalement uniforme, mais surtout de l'adapter en permanence aux exigences actuelles, en fonction des avancées scientifiques et techniques. Cela est valable autant pour la définition de certaines unités que pour le Système d'unités dans son ensemble. Ainsi, en 1960, l'unité du mètre a pu être définie non plus par une mesure de référence telle que le mètre étalon, mais par un phénomène physique, à savoir une longueur d'onde, réalisant ce faisant le mètre avec une plus grande exactitude. Une nouvelle définition du mètre, entrée en vigueur en 1983 et basée sur une constante naturelle, à savoir la vitesse de la lumière, a permis d'accroître encore l'exactitude.

En 1960, la 11º Conférence générale des poids et mesures a vu l'introduction du Système international d'unités (SI), un système métrique élargi. Ce dernier est aujourd'hui la base contraignante pour les mesures dans le monde entier. Avec la révision du SI, entrée en vigueur le 20 mai 2019, l'unité du kilogramme a elle aussi pu être définie par une constante naturelle.

On ne saurait trop souligner l'importance d'une infrastructure métrologique coordonnée à l'échelle internationale, telle que celle créée par la Convention du Mètre, d'autant plus dans la mesure où elle a été conçue pour permettre un système d'unités en évolution constante.



Dr Hugo Lehmann

À l'heure où la communauté mondiale de la métrologie célèbre le 150° anniversaire de la Convention du Mètre¹, l'acte de naissance du Système international d'unités, un autre jubilé tombe en cette année 2025, proclamée Année internationale de la science et de la technologie quantiques par l'UNESCO: les 100 ans du développement initial de la mécanique quantique².

Autour de 1900, la physique classique ne parvient plus à expliquer tous les phénomènes physiques sur les plans atomique et subatomique. De nouvelles approches sont requises. C'est dans ce contexte que voit le jour, en 1925, la mécanique quantique, aujourd'hui un fondement indispensable des sciences naturelles.

#### À la fin du XIX<sup>e</sup> siècle, la physique prend un tournant maieur

Depuis la nuit des temps, les hommes sont fascinés par les couleurs de l'arc-en-ciel, le spectre de couleurs continu de la lumière visible.

Depuis le milieu du XIX<sup>e</sup> siècle, on sait que les atomes n'émettent pas un spectre continu, mais seulement des raies spectrales discrètes. Or, la physique de l'époque n'était pas en mesure d'expliquer ce phénomène. Le physicien suisse Johann J. Balmer avait certes trouvé une formule pour calculer les raies discrètes du spectre de l'hydrogène qui dépendait de nombres entiers,<sup>3</sup> mais la raison du phénomène restait littéralement dans l'ombre.

Et ce n'était pas la seule lacune dans les connaissances en physique de la fin du XIX<sup>e</sup> siècle. Le phénomène du spectre électromagnétique continu d'un corps rayonnant idéal, appelé «corps noir», demeurait lui aussi une énigme sur le plan théorique. C'est Max Planck qui s'attela d'abord à la résolution du problème. Pour expliquer ces spectres lumineux continus, il dut supposer que l'énergie n'était pas émise de manière continue, mais par étapes discrètes. À ce sujet, il note: \*\textitum nous voyons ainsi que l'élément d'énergie e doit être proportionnel à la fréquence v, donc:

$$\varepsilon = hv$$

Pour la constante naturelle h, aujourd'hui appelée constante de Planck, il obtient d'ailleurs une valeur qui s'écarte d'à peine plus de 1% de la valeur admise aujourd'hui.

Qu'est-ce que cela implique? La lumière est-elle divisée en portions discrètes? Cela aurait été surprenant, car depuis que James C. Maxwell avait publié sa théorie de l'électromagnétisme<sup>5</sup>, c'était en 1873, on considérait la lumière comme une onde électromagnétique. Comment cela était-il compatible avec les éléments d'énergie de Planck?

En 1905, Albert Einstein, alors collaborateur à l'Office fédéral des brevets dans la paisible Berne, reprit les idées de Planck pour expliquer l'effet photoélectrique<sup>6</sup>. Lorsque la lumière frappe une plaque métallique, des électrons sont libérés, mais pas à toutes

les longueurs d'onde de la lumière. Einstein supposa que la lumière ne pouvait être absorbée que par quanta, c'est-à-dire «par paquets». Les électrons peuvent sortir de la surface métallique seulement si l'énergie d'un photon est supérieure à l'énergie de liaison des électrons dans le métal. Dans ce travail, qui lui valut le prix Nobel en 1921, Einstein a donné une interprétation physique des éléments d'énergie de Planck.

# La lutte pour l'interprétation des spectres atomiques

Si l'idée d'Einstein sur les photons pouvait expliquer l'effet photoélectrique, elle ne résolvait pas le dilemme suivant: la lumière est-elle une onde ou une particule? Et si la lumière avait deux identités? Dilemme résolu en 1924 par Louis de Broglie dont la thèse de doctorat8 conclut à une dualité onde-particule. Selon cette dernière, la lumière présente à la fois un caractère d'onde et de particule. La théorie par de Broglie avait cela d'intéressant qu'elle s'appliquait non seulement à la lumière, mais aussi aux particules élémentaires (par exemple les électrons). Si elle fut d'abord accueillie avec scepticisme, elle fut rapidement confirmée par les expériences de Davisson et Thomson<sup>9</sup>, qui purent montrer que les électrons produisaient des figures d'interférence analogues à celles des ondes. Les particules élémentaires peuvent donc également être comprises comme des paquets d'ondes.

Voilà qui ne nous simplifie pas la tâche. Cependant, tous les éléments sont maintenant réunis pour résoudre l'énigme des raies spectrales discrètes des atomes, tâche à laquelle s'attela le physicien autrichien Erwin Schrödinger à la fin de l'année 1925. Alors professeur à l'Université de Zurich, Schrödinger passa les fêtes de Noël à Arosa, en compagnie d'une mystérieuse amante. <sup>10</sup> Que ce fût l'effet du paysage sublime ou du charme de son accompagnatrice: il y trouva l'inspiration nécessaire pour éclairer d'une nouvelle lumière le problème des spectres atomiques.

En 1913, Niels Bohr avait déjà postulé que les électrons tournent en orbites circulaires autour du noyau atomique. <sup>11</sup> Selon lui, seules les orbites dont l'énergie correspondait à un multiple entier de la constante de Planck étaient autorisées. La raison de cette règle demeurait toutefois inexpliquée.

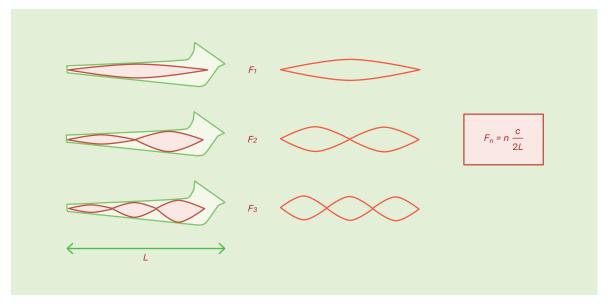



Illustration 1: à gauche, états d'oscillation dans un cor des Alpes de longueur L et les ondes stationnaires correspondantes; à droite, fréquences de la gamme naturelle harmonique, n étant un nombre naturel et c la vitesse du son.

C'est là qu'intervint Schrödinger. Après tout, même en mécanique classique, il existait des systèmes qui n'autorisent que certains états. Il suffit de prendre l'exemple d'un cor des Alpes. Dans le tube conique, seules des ondes correspondant à un multiple entier de la fréquence de base peuvent se former. C'est à cela que nous devons la gamme naturelle harmonique. Cette propriété repose sur les contraintes prédéfinies du système: dans le cas du cor, la pression aux deux extrémités. À l'intérieur du cor, seuls certains états d'oscillation peuvent se former, à savoir les ondes stationnaires (voir illustration 1).

Ce comportement des systèmes acoustiques avait interpelé Schrödinger. Dans l'introduction à la première version de son travail<sup>12</sup>, il nota:

L'entièreté des chiffres résulte du même phénomène naturel qui engendre l'entièreté du nombre de nœuds de vibration d'une corde.

Pour lui, l'électron, qui a également un caractère d'onde en raison de la dualité matière-onde, était une onde stationnaire autour du noyau atomique. Schrödinger décrivit l'énergie de ces états à l'aide de la célèbre équation qui porte son nom. Sans s'appuyer sur les règles de quantification de Bohr – des postulats sortis de son chapeau – Schrödinger obtint la quantification comme solution de l'équation d'onde. Sa théorie, la mécanique ondulatoire, doit d'ailleurs son nom à l'équation d'onde. Les solutions

de l'équation de Schrödinger donnent des fonctions spatiales qui décrivent la probabilité de la présence des électrons dans les orbitales de l'atome.

L'analogie entre la mécanique ondulatoire de Schrödinger et les méthodes de la physique classique expliquent peut-être pourquoi elle a été mieux reçue et comprise que la mécanique matricielle développée en 1925 par Werner Heisenberg à Göttingen. Comme son nom l'indique, la théorie de Heisenberg utilise des matrices pour calculer les niveaux d'énergie des électrons. Après maints débats sur la validité de l'une ou de l'autre, l'équivalence entre les mécaniques matricielle et ondulatoire a pu être démontrée quelques années plus tard.

En 1925, les bases de la mécanique quantique étaient ainsi posées. Si la compréhension de cette théorie révolutionnaire et de ses implications prit du temps, la bonne correspondance avec les résultats expérimentaux et les applications telles que le laser ou la technologie des semi-conducteurs firent que la mécanique quantique l'emporta.

#### Et ce n'est que le début...

Dans le présent article, nous avons mis en lumière la première révolution quantique, qui remonte à 1925 et qui est à l'origine de l'Année internationale de la science et de la technologie quantiques. Les initiateurs de l'Année quantique 2025 visent également à sensibiliser le public à l'importance de la mécanique quantique dans les sciences et les technologies.

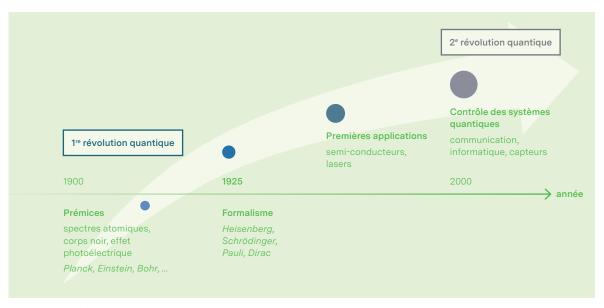



Illustration 2: évolution des sciences et des techniques quantiques au fil du temps.

Puisque la quantification représente une échelle invariable et solidement ancrée dans la nature, l'utilisation des effets quantiques est une évidence en métrologie. Au cours du XX<sup>e</sup> siècle, de plus en plus d'unités du SI ont en effet été définies à l'aide des effets quantiques. Actuellement, la seconde, le kilogramme et l'ampère sont directement fondés sur des constantes issues de la mécanique quantique.

Enfin, grâce aux nouvelles possibilités techniques de contrôle des systèmes quantiques dans les trois domaines clés que sont la communication, les ordinateurs et les capteurs quantiques, de nouvelles quantique» ouvrira la voie à des développements technologiques qui ne manqueront pas d'avoir une incidence décisive sur la vie des hommes dans les cent prochaines années.

applications se profilent. La «deuxième révolution

# 2025: Année internationale de la science et de la technologie quantiques

L'Année internationale de la science et de la technologie quantiques est placée sous le patronage de l'UNESCO. Son objectif est de profiter du centenaire de la mécanique quantique pour sensibiliser le public à l'importance et à l'influence des sciences et des applications quantiques sur tous les domaines de la vie. Pour l'occasion, toute une série d'activités sont organisées dans le monde entier.

Pour plus d'informations, consultez le site https://quantum2025.org/events/

- La Convention du Mètre fut signée et le Bureau international des poids et mesures (BIPM) fondé il y a 150 ans: https://www.bipm.org/fr/bipm-anniversary
- 2 Année internationale de la science et de la technologie quantiques: https://quantum2025.org/
- 3 Johann. J. Balmer, Notiz über die Spektrallinien des Wasserstoffs, Verhandlungen der Naturforschenden Gesellschaft in Basel, tome 7, p. 552
- 4 Max Planck, Über das Gesetz der Energieverteilung im Normalspektrum, Annalen der Physik, 309(3), 553 (1900)
- James Clerk Maxwell, A Treatise on Electricity and Magnetism (1873)
- 6 Heinrich Hertz, Über einen Einfluss des ultravioletten Lichtes auf die elektrische Entladung, Annalen der Physik und Chemie, tome 267, n° 8, 983 (1887)
- 7 Albert Einstein, Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt, Annalen der Physik, 132 (1905)
- 8 Louis de Broglie, Recherches sur la théorie des quanta, Paris (1924)
- 9 Clinton J. Davisson et George P. Thomson, Nobel Prize (1937): https://www.nobelprize.org/prizes/physics/1937/summary/
   10 Sur cette période charnière, il existe un court métrage qui
- fournit quelques informations contextuelles: https://www.news.uzh.ch/de/articles/2017/Schroedinger.ht.
- 11 Niels Bohr, On the constitution of atoms and molecules, The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science 26, 151 (1913)
- 12 Erwin Schrödinger, Quantisierung als Eigenwertproblem, Annalen der Physik. 384, 361 (1926)
- 13 Werner Heisenberg, Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen, Zeitschrift für Physik, 33 (1), 879 (1925)



#### D<sup>r</sup> Silvia Mallia, Rafael Aubert et Dominik Rolli

Dans un monde de plus en plus sensible à la durabilité, à la santé et aux questions d'éthique, les alternatives végétales aux produits carnés prennent de plus en plus d'importance: en particulier les produits de substitution du lait et de la viande, deux domaines en forte expansion qui modifient nos habitudes alimentaires et notre culture culinaire.

Les substituts du lait tels que les boissons à base d'avoine, d'amandes, de noix de coco ou de noisettes (illustration 1), et les substituts de la viande tels que le tofu et le seitan (illustration 2), présentent de nombreux avantages: ils sont plus respectueux de l'environnement, car leur production émet moins de CO<sub>2</sub> et consomme moins d'eau et de terres. En outre, grâce à eux, l'élevage et l'abattage d'animaux deviennent caducs. Enfin, ces produits

contiennent moins d'acides gras saturés que leurs équivalents au lait ou à la viande et sont exempts de cholestérol.

En revanche, les produits de substitution du lait et de la viande présentent un degré de transformation élevé et contiennent des additifs et des arômes. La biodisponibilité des protéines et des sels minéraux, c'est-à-dire la capacité de notre organisme à les absorber et à les utiliser, est souvent plus faible pour ces produits que pour les produits conventionnels.¹ De plus, les alternatives végétales présentent un manque de vitamine B<sub>12</sub>, raison pour laquelle certains fabricants les enrichissent en vitamine B<sub>12</sub> synthétique.



En résumé, une information fiable des consommatrices et consommateurs s'agissant de ces nouveaux produits est cruciale. Afin de répondre à ce besoin, METAS, en collaboration avec l'Office fédéral de la sécurité alimentaire et des affaires vétérinaires (OSAV) et la Société suisse de nutrition (SSN), a mesuré la teneur en sels minéraux des substituts du lait et de la viande. Les résultats sont publiés dans la base de données suisse des valeurs nutritives.

#### Base de données suisse des valeurs nutritives

La base de données suisse des valeurs nutritives contient des informations sur la composition des aliments disponibles en Suisse (illustration 3). Pilotée et financée par l'OSAV, et mise à jour par la SSN, cette base de données est accessible via le site Internet valeurs nutritives.ch. Elle sert de référence pour la recherche, les recommandations nutritionnelles et les décisions en matière de santé publique.

La version actuelle (V 7.0) fournit des informations sur plus de 1100 produits alimentaires. Pour chaque produit, on trouve des informations sur les macronutriments (p. ex. protéines, lipides, glucides), les

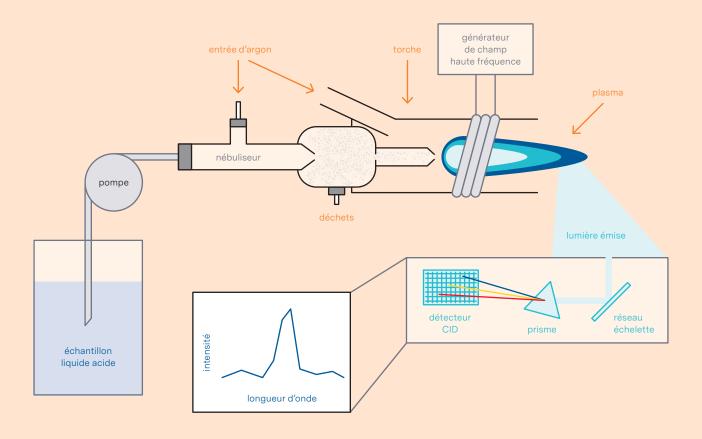


Illustration 3: la base de données suisse des valeurs nutritives contient un grand nombre d'informations sur la composition des aliments disponibles en Suisse



micronutriments (vitamines et minéraux) ainsi que la teneur en eau, en alcool et en énergie. La base de données est disponible en quatre langues (allemand, français, italien, anglais) et peut être consultée gratuitement. Elle est régulièrement complétée par des nouveaux produits alimentaires et mise à jour sur le plan scientifique.

#### Les microéléments et macroéléments sont vitaux


Le laboratoire Analyses et références inorganiques de METAS analyse les microéléments et les macroéléments présents dans les nouveaux produits alimentaires. Les résultats de ces analyses sont intégrés dans la base de données suisse des valeurs nutritives.

Les macroéléments sont des sels minéraux dont le corps humain a besoin en quantités relativement importantes (plus de 100 mg par jour) tels que le calcium (Ca), le potassium (K), le magnésium (Mg), le sodium (Na) et le phosphore (P). Les microéléments, également appelés oligoéléments, sont quant à eux des minéraux, tels que le fer (Fe), l'iode (I), le sélénium (Se) et le zinc (Zn), dont notre organisme n'a besoin qu'en quantités très limitées (moins de 100 mg par jour), mais qui sont indispensables à de nombreuses fonctions physiologiques.

#### Mesures effectuées sur environ soixante produits

Le laboratoire Analyses et références inorganiques a développé plusieurs méthodes spécialement destinées à l'analyse des macroéléments et microéléments dans les substituts du lait et de la viande. Entre 2023 et 2024, il a mis l'accent sur les microéléments et les macroéléments présents dans les produits de substitution du lait et de la viande vendus sur le marché suisse. Pas moins de dix-huit substituts du lait (tels que des yoghourts à base de

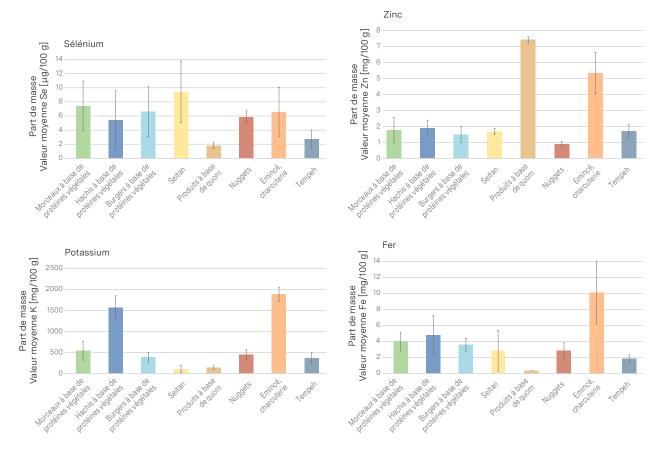
### Spectrométrie d'émission optique à plasma à couplage inductif (ICP-OES)



## Spectrométrie de masse à plasma à couplage inductif (ICP-MS)

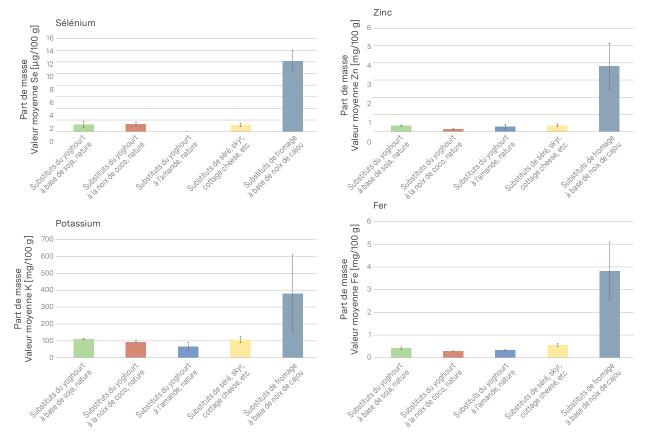


soja, d'amandes et de noix de coco, des substituts de séré et de cottage cheese et des substituts de fromage à base de noix de cajou) et 44 substituts de la viande (tels que des burgers, des nuggets et de l'émincé à base de protéines végétales et de seitan, quorn et tempeh) ont été analysés.


Dans un premier temps, une petite portion représentative de l'échantillon (200 mg) est traitée à l'acide nitrique, puis dissoute sous haute pression et à haute température dans un appareil de digestion par microondes.

Dans les solutions obtenues, les teneurs en calcium, en fer, en potassium, en magnésium, en sodium, en phosphore et en zinc sont ensuite déterminées par spectrométrie d'émission optique à plasma à couplage inductif (ICP-OES); les teneurs en iode et en sélénium sont, quant à elles, déterminées par

spectrométrie de masse à plasma à couplage inductif (ICP-MS). Les deux procédures sont présentées sur la page de gauche.


#### Aperçu des résultats

Parmi les produits de substitution de la viande analysés, l'émincé présentait des teneurs très élevées en potassium, sélénium, zinc et fer, comme l'indiquent les graphiques de l'illustration 4. Les substituts du fromage à base de noix de cajou contenaient un grand nombre de macronutriments et micronutriments issus en grande partie des noix de cajou ellesmêmes. Ces derniers se distinguent des autres substituts du lait par leur teneur élevée en potassium, fer, sélénium et zinc (voir graphique de l'illustration 5). La teneur remarquablement élevée en sels minéraux de ces produits pourrait s'expliquer en partie par leur teneur en eau nettement plus faible.



L'écart-type représenté montre la dispersion souvent très grande au sein d'une catégorie de produits.

Illustration 4: sélection de microéléments et de macroéléments dans les produits de substitution de la viande



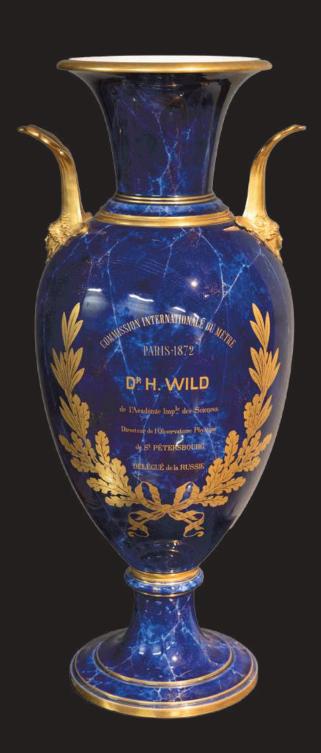
L'écart-type représenté montre la dispersion souvent très grande au sein d'une catégorie de produits.

Illustration 5: sélection de microéléments et de macroéléments dans les produits de substitution du lait

La variante végétale à base de protéines de soja ou de pois contient nettement plus de potassium, de sodium, de calcium, de magnésium, de phosphore et de fer que les émincés de viande. Les émincés à base de mycoprotéines présentent une teneur particulièrement élevée en calcium et en zinc, mais contiennent globalement moins de sels minéraux que ceux à base de soja ou de pois. Les émincés de viande, en revanche, fournissent le plus de sélénium, un antioxydant important qui n'est souvent présent qu'en faibles doses dans les produits végétaux.

# Les produits de substitution sont une alternative valable

Bien que les substituts végétaux soient naturellement riches en sels minéraux, il semblerait que la libération de ceux-là à partir de la matrice alimentaire pendant la digestion soit limitée, et que leur absorption s'en trouve réduite. Par ailleurs, les aliments végétaux contiennent des fibres alimen-


taires, de l'acide phytique et des polyphénols, qui peuvent se fixer aux sels minéraux et éventuellement empêcher leur libération pour l'absorption.<sup>2</sup>

Les substituts du lait et de la viande constituent néanmoins une alternative valable aux aliments d'origine animale, car ils contribuent à une alimentation variée et durable.

Les analyses réalisées dans ce contexte par METAS sont une contribution scientifique importante à l'enrichissement de la base de données suisse des valeurs nutritives – un outil clé pour la promotion d'une alimentation saine et d'informations à ce sujet en Suisse.

- 1 K. Platel et K. Srinivasan, 2016, Critical Reviews in Food Science and Nutrition, 8398, 1608-1619
- and Nutrition, 8398, 1608-1619.
  S. Rousseau, C. Kyomugasho, M. Celus, M. Hendrickx, T. Grauwet, 2020, Critical Reviews in Food Science and Nutrition, 60:5, 826-843.

# Un vase pour les métrologues



En 1872, le gouvernement français remit à chaque membre de la Commission internationale du Mètre un vase en porcelaine marine plaquée or personnalisé, fabriqué à la Manufacture nationale de Sèvres. Parmi eux, Heinrich Wild, qui bien que directeur de l'Office fédéral de vérification (plus tard METAS) de 1867 à 1869, représentait alors la Russie. En effet, il dirigeait également depuis 1868 l'observatoire de St-Pétersbourg et faisait partie de l'Académie des sciences.

#### Métrologie



1799

Mètre des archives et kilogramme des archives: « À tous les temps, à tous les peuples».

#### 1872

Commission internationale du mètre à Paris (vase offert par le gouvernement français).

#### 1889

Prototype du mètre et prototype du kilogramme; distribution des prototypes nationaux.

#### 1875



Convention du Mètre. Bureau international des poids et mesures (BIPM).

#### Suisse

## 1835

Concordat des cantons pour un régime suisse commun de mesures et de poids en Suisse.

#### **Pied suisse**

La base du système de mesure suisse est le **pied suisse**, qui correspond exactement à trois dixièmes du mètre français.

#### 1867

#### **Adolphe Hirsch**

Conférence Géodésique Internationale pour la mesure des degrés en Europe (directeur de l'Observatoire cantonal de Neuchâtel; secrétaire du Comité international des poids et mesures [CIPM] de 1875 à 1901).

#### 1872

#### **Heinrich Wild**

(directeur du Laboratoire fédéral de vérification de 1867 à 1869, délégué de la Russie à la Commission internationale du mètre; membre du Comité international des poids et mesures [CIPM] de 1875 à 1902.)

#### 1920

Prix Nobel de physique pour Charles Édouard Guillaume (employé au BIPM de 1883 à 1936, directeur de 1915 à 1936).

150 ans de la Convention du Mètre

# L'histoire du mètre en Suisse



#### 1862

Le Conseil fédéral décide de la création d'un Laboratoire fédéral de vérification (création de METAS).

#### 1909

Office fédéral des poids et mesures.

#### 1914

Bâtiment situé dans la Wildstrasse, dans le quartier de Kirchenfeld de Berne. 1948

Redéfinition de l'unité de courant électrique «ampère».

1955

Création de **OIML** (Organisation internationale de métrologie légale).

Première horloge atomique opérationnelle au césium.

1960

Système international d'unités (SI).

1967

Redéfinition de l'unité de temps «seconde» à l'aide de la mesure de la fréquence d'une transition de l'atome de césium.

1971

La «mole» devient une unité de base du SI.

1983

Redéfiniton de l'unité de longueur « mètre » par la vitesse de la lumière dans le vide.



Révision du Système international d'unités (SI). Redéfinition de l'unité kilogramme par une constante naturelle.

2025

150 ans de

du Mètre.

BIPM

la Convention

2019



1978

Introduction du Système international d'unités (SI) en Suisse.

2019

Révision de l'Ordonnance sur les unités.

1967

Inauguration des bâtiments à Wabern.



2000

Office fédéral de métrologie et d'accréditation (METAS).



2013

De l'Office fédéral à l'institut: Institut fédéral de métrologie METAS.



2022

Première réalisation du kilogramme avec la **balance de Watt** (balance de Kibble) de METAS.

1977

Office fédéral de métrologie (OFMET).



2001

Inauguration de l'extension du bâtiment.

2018

Avec son horloge atomique FoCS (Fontaine Continue Suisse), METAS réalise l'unité seconde et contribue à l'exactitude du temps universel coordonné (UTC).



#### Peter Rohrer

En arrière-plan, mais fondamentales, les analyses d'éthanol auxquelles procède l'Institut fédéral de métrologie METAS s'enchaînent chaque jour à grande vitesse. Avant que la livraison d'alcool distillé ne puisse être transvasée dans les citernes de l'entrepôt, il faut déterminer son contenu exact et le certifier officiellement. Or METAS ne se contente pas de fournir des analyses aux importateurs tels qu'Alcosuisse SA¹ ou Sucre Suisse SA², il prend indirectement part aux décisions concernant les chaînes de livraison, les tarifs des douanes et les processus de production industrielle. Il allie ainsi précision, gestion du temps et savoir-faire métrologique, apportant une plus-value considérable et assurant la sûreté de l'éthanol.

#### L'équipe derrière les analyses d'éthanol

Rattachée au domaine technique Essais chimiques et conseils de la division Chimie et biologie, l'équipe chargée des analyses se compose de son chef, de trois laborantines et laborantins chargés des analyses chimiques, et de deux laborantines qui préparent les tests sensoriels des échantillons d'alcool. Ces dernières forment également le personnel qui

déguste les échantillons pour classifier les éthanols (voir paragraphe «Dégustation»). De plus, deux collaborateurs scientifiques du domaine soutiennent l'équipe chargée des analyses dans l'établissement des certificats.

#### Déroulement des analyses d'éthanol

Les analyses d'éthanol pour Alcosuisse SA et Sucre Suisse SA constituent une prestation qui, d'une part, revêt une grande importance financière pour METAS et, d'autre part, se caractérise par une certaine urgence, puisque les analyses tournent tous les jours ouvrés, toute l'année – même entre Noël et Nouvel-An – selon un processus réglé comme du papier à musique.

Alcosuisse SA ou Sucre Suisse SA à Aarberg annoncent à METAS avant 15 h les échantillons à analyser le lendemain. Notre laboratoire d'analyse peut ainsi se préparer à l'ampleur de travail attendue et à la complexité des analyses mandatées, qui dépendent de la nature et de la quantité des matières premières importées, notamment par Alcosuisse SA. Lors d'une journée normale, sept ou huit mandats d'analyse nous parviennent de bonne heure par la poste et contiennent en général plusieurs bouteilles de 500 ml d'éthanol provenant toutes du même lot.

La laborantine ou le laborantin en service commence par entrer les échantillons dans le système. En fonction de l'inscription sur la bouteille, elle ou il précise selon laquelle des 250 spécifications il faut examiner l'échantillon, c'est-à-dire quel type d'analyse effectuer et dans quel ordre procéder. Le client peut demander de déterminer la teneur en éthanol de la solution, de détecter d'éventuels dénaturants ou impuretés ou mandater une dégustation (voir paragraphe correspondant).

Effectuées dans le courant de la matinée, les analyses demandées (y c. les dégustations) peuvent prendre plusieurs heures par échantillon, selon la complexité et l'étendue des spécifications. Le respect des délais est crucial et requiert une organisation optimale de plusieurs processus de laboratoire en parallèle.

Tous les résultats des analyses sont ensuite saisis dans le système de gestion des mandats. Enfin, une collaboratrice ou un collaborateur scientifique en contrôle la plausibilité et la justesse avant de donner son feu vert à l'établissement des certificats.

L'ensemble du processus, de la réception des échantillons à l'envoi aux mandants des certificats PDF signés électroniquement, doit être bouclé avant midi. Pourquoi cette course contre la montre? N'oublions pas que les conteneurs d'éthanol en cours de livraison dans les entrepôts attendent toujours, scellés sur les véhicules de transport, d'être vidés dans les grandes citernes. Tant qu'il n'a pas été déterminé et certifié à quelle classe de qualité le produit correspond, celui-là ne peut être ni accepté ni transvasé. La chaîne de livraison est donc interrompue le temps que METAS termine ses analyses.

#### Dégustation

Alors comme ça à METAS, sous le couvert de la science, on est payé pour boire du schnaps?!

Bien sûr que non. La «dégustation» (que l'on devrait en fait appeler «test sensoriel») consiste dans le cas des échantillons d'éthanol pur envoyés par Alcosuisse SA ou Sucre Suisse SA non pas en une dégustation orale «classique», mais en une évaluation olfactive du degré de neutralité et donc de la qualité de chaque échantillon. Pour cela, l'équipe chargée des analyses peut si besoin faire appel aux sens aiguisés de quelque quinze collaboratrices et collaborateurs de METAS spécialement formés à la dégustation.

Pour garantir la meilleure objectivité et justesse scientifique possible, les laborantines anonymisent les échantillons afin qu'ils puissent être évalués à l'aveugle. Chaque échantillon doit être testé par au moins trois nez – bien qu'ils soient généralement plus nombreux – pour qu'une moyenne représentative des niveaux d'émanation perçus puisse être calculée.



- 1 Alcosuisse SA a été fondée en 1998 en tant que centre de profit de la Régie fédérale des alcools, puis privatisée en 2018 et vendue à l'entreprise Thommen-Furler AG, basée à Rüti bei Büren (BE). Alcosuisse SA est l'importateur principal d'éthanol en Suisse et fournit près de 500 000 hectolitres d'éthanol en plus de cinquante qualités différentes à l'industrie, au secteur pharmaceutique et au secteur alimentaire.
- 2 L'entreprise Sucre Suisse SA, créée en 1997 par la fusion des sucreries d'Aarberg (BE), fondée en 1899, et de Frauenfeld (TG), fondée en 1903, transforme sur ses deux sites les betteraves sucrières en sucre et autres produits dérivés pour l'industrie et les consommatrices et consommateurs.

Les échantillons sont ensuite classés dans l'une des catégories de qualité, «neutre», «très faible», «faible», «faible à évident» ou «évident», en fonction de l'intensité d'une éventuelle odeur indésirable. Les testeuses et testeurs ont à disposition des références d'odeurs étalonnées pour «étalonner» à leur tour leur odorat et comparer les échantillons.

La catégorie «neutre» correspond à l'absence d'odeur indésirable et donc à la meilleure qualité d'éthanol, tandis que la catégorie «évident» implique une odeur indésirable flagrante et correspond donc à la qualité la moins bonne.



La dégustation ne se fait que par l'odorat: les échantillons sont comparés à des références étalonnées et classés selon leur qualité.

#### Production d'éthanol suisse par Alcosuisse SA

Depuis l'été 2022, la sucrerie d'Aarberg (BE) produit de l'éthanol suisse de première qualité pour l'industrie des spiritueux. Alcosuisse SA a construit une distillerie à Aarberg en collaboration avec Sucre Suisse SA pour produire de l'éthanol à partir de la mélasse, un sous-produit de la fabrication du sucre.

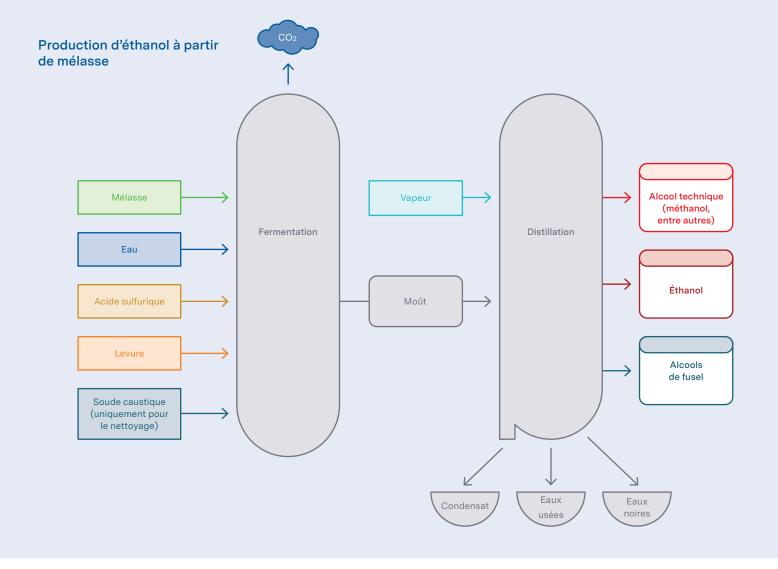
Les cinq colonnes de distillation – un nombre supérieur à la norme pour une telle installation – permettent d'obtenir cet alcool d'excellente qualité.

Comme l'illustre le schéma du processus de production, l'eau, l'acide sulfurique et la levure sont ajoutés à la mélasse, formant ainsi le moût, qui fermente dans de grandes citernes. Selon le type de levure ajouté, le moût contient environ 15% en volume d'alcool. Après distillation, on obtient, outre le méthanol et les huiles de fusel, un éthanol à 96% en volume d'alcool. Les résidus de distillation, condensat, eaux usées et eaux noires, sont éliminés.

L'éthanol suisse, nommé CH1, fait l'objet d'une production saisonnière, puisque la sucrerie d'Aarberg ne peut lancer celle-là qu'après la récolte annuelle de la betterave sucrière et la production du sucre, sans laquelle elle n'aurait pas de mélasse. La mélasse est donc collectée tout au long du processus de production du sucre et stockée jusqu'à sa transformation en moût au printemps.

Le schéma ci-contre illustre le processus de production de l'éthanol suisse sur le site d'Aarberg.




Les colonnes de distillation de la sucrerie d'Aarberg (BE) servant à produire l'éthanol suisse.

Avant que la mélasse ne soit utilisée pour produire de l'éthanol, elle était éliminée en tant que déchet de la production du sucre. Alcosuisse SA et Sucre Suisse SA ont donc ouvert les portes d'un marché prometteur, qui génère en outre une plus-value en matière de durabilité grâce à l'exploitation d'une nouvelle matière première.

#### Liens

METAS, domaine Essais chimiques et conseils: www.metas.ch/essais-chimiques-conseils Alcosuisse SA: www.alcosuisse.ch Éthanol suisse: www.schweizer-ethanol.ch

Sucre Suisse SA: www.zucker.ch
Thommen-Furler AG: www.thommen-furler.ch/fr



#### L'importation d'alcool en Suisse

L'alcool – un sujet certes débattu – engendre des droits de douane et des impôts, une manne à laquelle l'État n'est pas prêt à renoncer. C'est pourquoi il est essentiel qu'un institut certifié comme METAS classifie l'éthanol importé.

Alcosuisse SA importe différentes qualités d'éthanol, livré dans des conteneurs scellés par le fabricant dans l'entrepôt des exploitations de Delémont (JU) et de Schachen (LU). Depuis la forte hausse du besoin en alcool à des fins de désinfection pendant la pandémie de COVID-19 à partir de 2020, la quantité d'alcool pur nécessaire dans notre pays a très fortement augmenté.

Les conteneurs ne peuvent pas être déversés directement dans les citernes de l'entrepôt, car la livraison peut contenir différentes qualités d'éthanol. L'éthanol doit donc d'abord être analysé et certifié par METAS, non seulement en prévision de l'utilisation qui en sera faite (dans les boissons, les denrées alimentaires, les industries chimique, pharmaceutique, du parfum, etc.), mais aussi pour déterminer le tarif des douanes et les taxes à appliquer. Selon le cas, ces caractéristiques comportent donc un enjeu financier important, dont METAS fournit, par le biais de ses analyses et de ses certifications, les paramètres déterminants.



#### D<sup>r</sup> Sándor Vörös

En médecine nucléaire, différents types de radionucléides (atomes radioactifs) sont injectés aux patientes et patients à des fins de diagnostic ou de traitement des pathologies (voir encadré 1). Afin de déterminer précisément la quantité de substance à utiliser, une mesure de l'activité de la source radioactive est effectuée avant chaque application à l'aide d'un activimètre (voir encadrés 2 et 3). En effet, une activité trop élevée provoquerait une irradiation excessive et inutile de la patiente ou du patient, mettant potentiellement la santé en danger, alors qu'une activité trop faible compromettrait l'efficacité du traitement ou de l'examen médical.

#### Assurance qualité des activimètres

La législation suisse prévoit que les activimètres utilisés en médecine nucléaire doivent remplir différentes conditions¹ et être soumis à des procédures d'assurance qualité strictes². L'une des exigences est la vérification légale triennale de l'instrument, que METAS effectue sur site à l'aide de sources radio-

actives de référence de longue période radioactive: du cobalt (Co-57 et Co-60), du césium (Cs-137) et du strontium/yttrium (Sr-90/Y-90).

Cette vérification, combinée à d'autres types de contrôles tels que les résultats des mesures de linéarité semestrielles et des rapports d'entretien de l'instrument, permet de garantir le bon fonctionnement de l'activimètre. En revanche elle ne permet pas d'évaluer l'exactitude des coefficients d'étalonnage, utilisés par l'instrument pour déterminer l'activité des différents radionucléides (voir encadré 3). Ces coefficients d'étalonnage sont soit fournis par le fabricant de l'activimètre, soit déterminés après sa mise en service à l'aide d'une source de référence du radionucléide, soit déterminés sur site par comparaison avec un activimètre de référence transportable. Cette dernière méthode offre la meilleure traçabilité au becquerel (Bq), mais sa mise en œuvre représente un effort important.

#### Des radionucléides problématiques

Certains radionucléides ont des propriétés qui rendent la détermination de leur activité très délicate, les valeurs affichées par l'activimètre pouvant être influencées par différents paramètres de la mesure. Il s'agit en particulier des radionucléides émetteurs bêta purs tels le lutétium (Lu-177) ou l'yttrium (Y-90) ou ceux n'émettant que des rayonnements gamma de faible énergie, par exemple l'iode (I-123). De petites variations géométriques comme l'épaisseur de la paroi du flacon ou de la seringue dans lequel se trouve la source ou sa position dans le puits de l'activimètre peuvent fausser le résultat de façon importante. Seule l'utilisation de coefficients d'étalonnage déterminés spécifiquement pour chacune des géométries utilisées est à même de garantir la précision requise.

#### Les mesures doivent être améliorées

Une étude<sup>3,4</sup> menée conjointement par l'Institut fédéral de métrologie METAS, l'Institut de radiophysique de Lausanne (IRA) et l'Office fédéral de la santé publique (OFSP) s'est penchée sur ces paramètres d'influence et a quantifié les écarts pouvant affecter les mesures d'activité de ces radionucléides « problématiques ». L'étude incluait une large consultation des centres de médecine nucléaire suisses afin d'avoir une vue d'ensemble de leurs

#### Qu'est-ce que la médecine nucléaire?

La médecine nucléaire est la spécialité médicale qui s'occupe de l'utilisation de radioéléments (isotopes radioactifs) pour l'étude, le diagnostic et le traitement de pathologies affectant les organes ou les tissus.

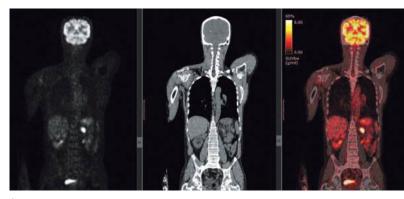
Dans le domaine du diagnostic, la médecine nucléaire fournit des images bi- ou tridimensionnelles, complétant les informations de la radiologie, l'échographie et l'imagerie par résonnance magnétique (IRM). Les deux principaux systèmes de détection sont la scintigraphie gamma et la tomographie par émission de positons (PET), généralement complétés par de l'imagerie à rayons X couplée à un ordinateur (CT). Ils permettent d'obtenir des images de grande précision du muscle cardiaque, des poumons, de la thyroïde, du cerveau, etc. Ces images permettent de détecter des lésions profondes ou des maladies à des stades précoces de leur développement.

Dans le domaine thérapeutique (radiothérapie métabolique ou vectorisée), on administre un isotope radioactif par voie orale ou par injection, qui se fixe préférentiellement sur les cellules cibles malades. Cette technique permet le traitement de maladies bénignes (p. ex. hyperthyroïdie) ou malignes (cancers thyroïdiens, métastases de cancer de la prostate, etc.).

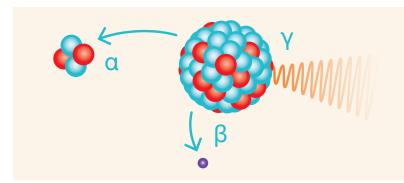


Scanner PET-CT (voir encadré 1).

#### Qu'est-ce que la radioactivité?


La radioactivité est le phénomène physique par lequel des noyaux atomiques instables (appelés radionucléides ou radioisotopes) se transforment spontanément en d'autres atomes (désintégration), émettant simultanément des particules de matière (électrons, noyaux d'hélium, neutrons, etc.) et de l'énergie (photons et énergie cinétique). L'émission de particules matérielles et immatérielles est appelée « rayonnement », et l'énergie des particules est suffisante pour entraîner l'ionisation de la matière traversée, c'est-à-dire arracher des électrons liés aux atomes de cette matière, d'où le nom de rayonnements ionisants. On distingue classiquement les rayons  $\alpha$  constitués de noyaux d'hélium (également appelés particules  $\alpha$ ), les rayons  $\beta$  constitués d'électrons ou de positrons (particules  $\beta$ ) et les rayons  $\gamma$  constitués de photons, auxquels il faut ajouter les neutrons qui proviennent des fissions spontanées.

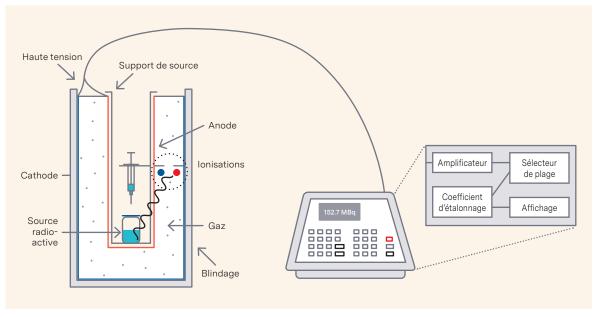
pratiques en la matière, des mesures sur site dans quelques hôpitaux et une étude systématique des écarts de mesure que l'on peut attendre menée dans le laboratoire de type C de METAS<sup>5</sup>. L'activimètre de référence TCIR (chambre d'ionisation de référence transportable) de l'IRA/METAS a été utilisé lors des différentes étapes du projet.


Les résultats montrent des écarts parfois très importants entre les activités mesurées et les activités de référence, jusqu'à plusieurs dizaines de pour cent. La révision en cours de l'ordonnance sur les instruments de mesure des rayonnements ionisants (OIMRI)¹ et de la directive sur l'assurance qualité des activimètres² intégrera certains enseignements de cette étude afin d'améliorer la précision des mesures d'activité dans les centres de médecine nucléaire. En outre, un second activimètre de référence, TCIR-II, sera construit afin d'augmenter les capacités d'étalonnage sur site et ainsi permettre des mesures plus fiables dans les centres de médecine nucléaire suisses.

#### Développement de la coordination internationale

Les lacunes métrologiques constatées en Suisse sont un problème commun à toute l'Europe, où plusieurs millions de patientes et patients reçoivent des injections de produits radiopharmaceutiques chaque année. Cette situation découle en partie des origines de la médecine nucléaire, en tant que technique qualitative ou palliative, et peut conduire à un traitement insatisfaisant des pathologies et à des essais cliniques infructueux. En outre, l'absence d'évaluation de l'incertitude au niveau de la dose administrée à la patiente ou au patient, constitue également un obstacle critique lorsqu'il s'agit d'effectuer des mesures traçables (impossibilité de comparer les images et le résultat des traitements entre eux).




À partir de la gauche: image PET obtenue grâce à un radiotraceur (révélant l'activité métabolique), image CT obtenue grâce à des rayons X (révélant l'anatomie) et la combinaison des deux, offrant de nombreux de détails permettant une détection très efficace des pathologies (voir encadré 1).



Un noyau atomique radioactif peut se désintégrer en émettant des rayonnements  $\alpha$ ,  $\beta$  ou  $\gamma$  (voir encadré 2).

#### Mesure de l'activité d'une source

Une source radioactive est caractérisée par sa composition (le type d'atomes dont elle est constituée) et son activité (le nombre d'atomes qui se désintègrent par unité de temps). L'activité dépend du nombre total d'atomes et de leur période (appelée aussi demi-vie), qui désigne le temps nécessaire pour que la moitié des noyaux initialement présents se désintègrent. Dans le système international d'unités (SI), l'activité d'une source, soit le nombre de désintégrations par seconde (s-1), est exprimée en becquerels (Bq). L'instrument couramment utilisé pour la mesurer s'appelle un activimètre. Il se présente le plus souvent comme une chambre d'ionisation à puits, constituée de deux cylindres concentriques entre lesquels un gaz sous haute pression est ionisé sous l'effet du rayonnement émis par la source radioactive placée en son centre. Les charges d'ionisation ainsi libérées dans le gaz dérivent sous l'effet d'une haute tension jusqu'à des électrodes, où leur courant (de l'ordre du nanoampère) est mesuré par un électromètre. L'activité de la source est évaluée en appliquant à la valeur du courant mesurée un coefficient d'étalonnage spécifique à chaque radionucléide.



Principe d'un activimètre (voir encadré 3).

Pour remédier à cette situation, le projet européen ETrain<sup>6</sup> a démarré en 2025. Il a pour but le développement d'un réseau de services d'étalonnage pour activimètres dans tous les pays membres de l'Association européenne des instituts nationaux de métrologie (EURAMET), afin d'établir la traçabilité métrologique des mesures d'activité en médecine nucléaire. METAS et l'IRA y participent afin que les connaissances et les expériences qui en découleront bénéficient également aux patientes et patients des centres de médecine nucléaire suisses.

- 1 Ordonnance du DFJP sur les instruments de mesure des rayonnements ionisants (OIMRI), RS 941.210.5: https://www.fedlex.admin.ch/eli/cc/2012/878/fr (actuellement en révision)
- 2 Office fédéral de la santé publique (OFSP), Assurance qualité des activimètres, Directive L-09-01: https://backend.bag.admin.ch/fileservice/sdweb-docs-prod-bagadminch-files/files/2025/03/18/d21eb30e-8973-41a8-9dbc-4667e95afc28.pdf (actuellement en révision)
- 3 Étude des coefficients d'étalonnage des activimètres et influence de la géométrie pour les émetteurs bêta-gamma: https://backend.bag.admin.ch/fileservice/sdweb-docs-prod-bagadminch-files/files/2025/03/18/ce565232-00a1-467a-b60b-c2b54ee837f5.pdf
- 4 S. Vörös et al., Investigation on calibration coefficients of dose calibrators and influence of different geometries for betaand gamma-emitters, Physica Medica 125S1 (2024) S443: https://www.sciencedirect.com/science/article/pii/ S1120179724009578
- 5 L'ordonnance sur la radioprotection prévoit des exigences architecturales visant à circonscrire le danger en confinant les substances radioactives non scellées. Selon la dangerosité et la quantité des radionucléides manipulés, l'utilisation d'un laboratoire disposant de différents types d'équipements est nécessaire (p.ex. hottes de manipulation blindées avec filtration de l'air). Un tel laboratoire est désigné par son type (A, B ou C) suivant le niveau de sécurité requis.
- 6 Establishing traceability routes in nuclear medicine (ETrain), 24RPT01
- 7 https://fr.wikipedia.org/wiki/Radioactivité



Interview avec Ulrich Schlapbach et Philippe Chavanne, par Xavier Rappo

#### Ulrich Schlapbach et Philippe Chavanne, vous avez rejoint METAS il y a seulement quelques mois. Qu'est-ce qui vous a le plus impressionnés en arrivant?

Ulrich Schlapbach (à gauche): L'immense étendue de l'expertise présente à METAS m'a particulièrement frappé. Les collaboratrices et collaborateurs mettent du cœur à l'ouvrage, ça se sent, et c'est magnifique.

Philippe Chavanne (à droite): Je ne peux qu'approuver! La barre est vraiment haute et la fierté professionnelle palpable. La culture est également particulièrement positive: elle se caractérise par une grande ouverture et une disposition à la collaboration, mais aussi par un certain niveau d'exigence.

#### Vous avez pris vos fonctions dans le même domaine, à deux mois d'intervalle. Comment décririez-vous votre collaboration? Tout ce «sang neuf» d'un coup a-t-il engendré certaines difficultés?

U.S.: Pour moi, tout était nouveau ici. Quand Philippe est arrivé, je me suis donc demandé ce qu'il ignorait encore forcément, où je pouvais lui apporter un soutien supplémentaire et où je pouvais échanger avec lui sur nos débuts communs et son ressenti.

P.C.: Nous nous sommes embarqués ensemble dans cette découverte du monde de la métrologie. Au cours de ce périple, il nous arrivera certainement de poser une ou deux questions naïves et de remettre en question le statu quo, car nous venons avec notre propre bagage et de nouvelles perspectives.

# Que connaissiez-vous de la métrologie avant de rejoindre METAS?

U.S.: En ce qui concerne la métrologie industrielle, j'étais en terrain connu, car j'ai beaucoup d'expérience dans ce domaine. En revanche, j'ai dû me familiariser avec la métrologie légale, une branche que je connaissais peu, et je suis sûr de pouvoir approfondir mes connaissances en métrologie fondamentale.

P.C.: Mes connaissances en métrologie me viennent surtout de l'industrie. Un institut national comme METAS m'offre donc une approche plus globale. Ici, nous couvrons tout le spectre métrologique, des



étalonnages commerciaux aux approbations nationales en passant par la recherche internationale et la réalisation primaire d'unités de mesure. C'est pour moi un défi passionnant que de pouvoir participer à tout cela.

# Venez-vous tous les deux du domaine scientifique?

U.S.: Après mes études d'électrotechnique à l'École polytechnique fédérale de Zurich, j'y ai travaillé presque deux ans en tant que collaborateur scientifique, avant de me diriger vers l'industrie, chez ABB. J'y ai occupé des postes liés à la physique, en particulier pendant quatorze ans dans l'industrie des semi-conducteurs. Pendant les huit années qui ont précédé mon arrivée à METAS, j'ai travaillé dans les services, où j'ai développé de nouvelles prestations d'accompagnement de la clientèle.

P.C.: Ma carrière professionnelle a aussi débuté dans le milieu scientifique, après mes études en sciences de la vie à la Haute École spécialisée de la Suisse du Nord-Ouest (FHNW). J'y ai monté un groupe de recherche dans la fabrication additive de biomatériaux, dont les travaux ont abouti à la



création de Mimedis AG. J'ai ainsi découvert le monde des start-up. Je suis ensuite resté dans la technologie médicale et j'ai occupé pendant huit ans différents postes en recherche et développement à l'Institut Straumann AG, une entreprise suisse spécialisée dans la fabrication d'instruments et de composants pour la chirurgie dentaire.

# À votre avis, que peut apprendre METAS de l'industrie et de vos expériences?

P.C.: Dans mon cas, c'est mon expérience dans un environnement de travail très régulé, mais ouvert à l'innovation qui apporte une plus-value. Même si la métrologie n'est pas régulée de la même manière que la technologie médicale, je suis convaincu que nous avons beaucoup à apprendre de ce domaine, en particulier comment mettre en œuvre des systèmes de gestion de la qualité efficaces, qui satisfassent aux plus hautes exigences de qualité et de sécurité, mais laissent néanmoins une marge de manœuvre pour l'innovation.

U.S.: Je pense que METAS incarne avant tout une optimisation très statique, focalisée sur l'exactitude de mesure et la précision. À l'inverse, dans l'industrie, les décisions dynamiques s'enchaînent. Je

pense que ce sont là les deux approches à allier, en particulier parce que METAS est un institut et doit non seulement satisfaire aux exigences légales, mais aussi réaliser lui-même une part de son chiffre d'affaires. Réussir à combiner ces deux approches sans générer de conflits insolubles, c'est à mon avis le défi le plus intéressant.

P.C.: Avant, avec toutes les tâches légales, la question de la clientèle se posait moins: dans certains cas, les clients n'avaient pas d'autre choix que de venir chez nous. Aujourd'hui, un institut national doit centrer son attention sur le client, comprendre ses besoins et y répondre au mieux.

# Pourquoi avez-vous choisi de travailler à METAS? Quelle a été votre motivation?

U.S.: À cinquante-six ans, je me suis demandé quelle direction je voulais donner aux années de travail que j'avais devant moi. J'ai trouvé que c'était le bon moment dans ma carrière pour changer d'environnement et continuer ainsi mon développement personnel. J'ai en outre l'impression de pouvoir mettre ici à profit mon expérience et mon savoir.

P.C.: Pour ma part, j'avais besoin de retourner travailler dans une organisation qui voit loin, et c'est ce que j'ai trouvé ici. La culture des expertes et experts qui travaillent à METAS, ouverte et empreinte de fierté professionnelle, m'a beaucoup plu. Enfin, c'était pour moi un retour aux sources: j'ai grandi dans la région de Berne, et c'est un plaisir de revenir y travailler.

# Quel est votre style de conduite? Quelles sont les valeurs que vous aimeriez transmettre?

U.S.: Mes mots d'ordre sont « se concentrer sur l'objectif » et « rester authentique »; ce sont des principes auxquels j'aimerais me tenir et que je souhaite incarner. Je me vois d'ailleurs comme un leader et non comme un manager, cette approche-là aussi me tient à cœur. Il est à mon avis essentiel que les décisions soient mûrement réfléchies, avant d'être appliquées en conséquence.

Autrement dit, j'évite la gestion autocratique: je veille à ce que nous travaillions ensemble et trouvions le bon moment pour décider de la manière de procéder. Par contre, les décisions doivent ensuite être appliquées. Mes collaboratrices et collaborateurs ne doivent pas tous être d'accord avec les décisions, mais ils doivent pouvoir les comprendre. C'est un point que je trouve primordial.

P.C.: Je privilégie une gestion démocratique et aimerais encourager les collaboratrices et collaborateurs à assumer des responsabilités. En ce sens, il est important pour moi de favoriser une culture qui soit ouverte à l'erreur tout en conservant un certain cadre. Notre personnel technique et scientifique notamment dispose d'un grand potentiel que nous devrions exploiter davantage. J'encourage de plus une culture de décisions fondées, prises avec objectivité et appliquées en conséquence.

#### Revenons-en à vos débuts à METAS: qu'avezvous entrepris pendant ces premiers mois? Avez-vous rencontré quelques défis personnels?

*U.S.:* Je suis avant tout allé à la rencontre des gens pour faire leur connaissance: je voulais comprendre les rôles, les tâches, le fonctionnement des processus, les rouages de METAS et leurs points de friction, là où les choses ne fonctionnent pas comme on l'imagine ou comme on le souhaite.

P.C.: Moi aussi, j'ai d'abord dû me familiariser avec la matière, rencontrer les gens et créer mon réseau avant de commencer mes analyses. Je devais dans un premier temps comprendre le laboratoire et le domaine pour pouvoir ensuite donner quelques conseils en matière de *lean management*.

# D'après vous, quelles sont pour l'instant les principales missions de votre nouvelle fonction?

U.S.: Ma tâche principale consiste à développer la stratégie du domaine pour ces prochaines années, c'est-à-dire choisir une direction et se positionner en vue de l'orientation que nous prendrons en 2030. P.C.: La mienne sera de trouver un équilibre entre prestations d'étalonnage et recherche. Mon objectif est que le laboratoire puisse, grâce à des activités de recherche et de développement ciblées, rester à la pointe de la métrologie et conserver son succès économique. Pour ce faire, il est primordial d'embarquer les collaboratrices et collaborateurs dans ce périple et de les impliquer.

# Quelles sont vos priorités pour les six prochains mois?

P.C.: J'avais un premier objectif clair: l'audit de notre laboratoire en juin par l'Institut national de métrologie autrichien. Je devrai avoir fini mon analyse du laboratoire, c'est-à-dire ma familiarisation avec le personnel, les finances, les places de mesure et le cycle de vie de celles-là, afin de résumer l'état actuel des choses et d'identifier les améliora-

tions potentielles. Sur cette base, il s'agira de définir une nouvelle mission qui s'inscrive dans la stratégie du domaine.

*U.S.:* Pour moi, ce sera le développement de la stratégie en collaboration avec les différents laboratoires, domaines, chefs de division et la direction.

# Pouvez-vous résumer vos premiers mois à METAS en un mot ou une image?

U.S.: L'étonnement et l'émerveillement dans le regard des visiteuses et visiteurs quand ils viennent faire un tour dans les laboratoires est une image qui m'est restée parce que je partage leur impression. Lorsqu'ils entrent, les visiteuses et visiteurs ne savent pas ce qui les attend, puis ils plongent dans le monde de la métrologie, au cœur des laboratoires. Il n'y a pas de quoi s'ennuyer, car chaque étape nous réserve son lot de surprises.

P.C.: Pour différentes raisons, je vois mes premiers mois à METAS comme un paysage de montagne. Je me trouve au pied d'une paroi rocheuse et suis une courbe d'apprentissage personnelle: la métrologie. Dans un institut national de métrologie comme le nôtre, nous sommes pour ainsi dire au sommet de la chaîne de traçabilité et bénéficions de la clairvoyance nécessaire. D'un autre côté, nous disposons d'expertes et d'experts capables de creuser au plus profond des vallées de la recherche métrologique fondamentale. C'est un va-et-vient continu entre différentes altitudes.

#### **En bref**

# Rapport annuel 2024 sur l'exécution de la loi sur la métrologie

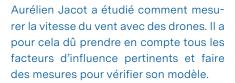
En 2024, dans le cadre de l'exécution de la loi fédérale sur la métrologie, plus de 175000 instruments de mesure ont été contrôlés et étalonnés, et plus de 740000 compteurs d'électricité ont fait l'objet d'un contrôle statistique. Outre notre institut, les autorités de surveillance cantonales, les offices de vérification cantonaux ainsi que les laboratoires de vérification habilités par METAS assurent l'exécution de cette loi. Le rapport annuel 2024 fournit de plus amples informations à ce sujet.



Liens vers le rapport:

https://www.metas.ch/dam/metas/fr/data/dokumentation/metas-publikationen/berichte/jahresbericht\_vollzug\_messgesetz/jahresbericht-2024-f.pdf.download.pdf/jahresbericht-2024-f.pdf

# Nouvelle cheffe du domaine Essais chimiques et conseils


Le 1er août, Gisela Umbricht a repris les rênes du domaine technique Essais chimiques et conseils. Elle succède à Markus Stadler, qui prend une retraite anticipée. Titulaire d'un doctorat en chimie et d'un post-doctorat à la Colorado State University, Gisela Umbricht fait ses premières expériences de direction

dans l'industrie, avant de rejoindre la Direction générale des douanes, où elle a été cheffe d'une unité organisationnelle durant plusieurs années. À METAS, en qualité de cheffe de laboratoire, elle a notamment créé et développé deux laboratoires

# Science et jeunesse: prix spécial de métrologie

METAS finance le prix spécial de métrologie du Concours national de la fondation Science et jeunesse. Cette année, une lauréate et deux lauréats ont été désignés.

Franziska Fehr a étudié le bien-être mental des jeunes en se fondant sur l'indice de bien-être de l'OMS et en a tiré des conclusions sur un bien-être plutôt dans la moyenne.



Laurin Seeholzer a développé un modèle de simulation de la température en surface, qui ne dépend plus que de la qualité des données d'entrée.

Ces excellents travaux issus de différentes disciplines montrent l'importance de la métrologie pour la recherche.







# Nouveau protocole pour l'analyse du dioxyde de titane

En 2021, l'Autorité européenne de sécurité des aliments a banni le dioxyde de titane (TiO<sub>2</sub>) de la liste des additifs alimentaires sûrs, une décision suivie par la Suisse. Cette substance, que l'on peut trouver sous forme de nanoparticules, était notamment utilisée comme colorant (nommé E171) dans les denrées sucrées. Le nouveau protocole de préparation des échantillons, publié dans un rapport d'application en collaboration avec l'entreprise Anton Paar, ne prévoit plus l'utilisation de produits chimiques dangereux et simplifie le processus analytique. Il permet ainsi de détecter sans risque et avec efficacité la présence de TiO<sub>2</sub> dans les échantillons.



Lier

https://www.anton-paar.com/corp-en/services-support/document-finder/application-reports/towards-a-safe-and-efficient-digestion-of-tio2-nanoparticles-in-confectioneries-using-hbf4/

# Déclaration d'intention avec la School of Biomedical and Precision Engineering (SBPE) de l'Université de Berne



En janvier 2025, l'Institut fédéral de métrologie METAS et la School of Biomedical and Precision Engineering (SBPE) ont signé une déclaration d'intention à Berne. Celle-là vise à renforcer la collaboration en matière de recherche et de formation dans les domaines de l'ingénierie de précision et de la métrologie. Chacune des deux institutions pourra profiter des infrastructures techniques et scientifiques et des connaissances spécifiques de l'autre. Des échanges réguliers sont assurés par la mise sur pied de séminaires, de colloques et d'ateliers.



Communiqué complet:

https://www.metas.ch/metas/fr/home/dok/ publikationen/meldungen/mou\_metas\_sbpe.html



# METAS à l'Exposition universelle 2025 à Osaka

À l'Exposition universelle 2025, qui s'est déroulée à Osaka (Japon), l'Institut fédéral de métrologie METAS et l'Office fédéral de météorologie et de climatologie MétéoSuisse, en collaboration avec Swisens AG, ont présenté du 11 juin au 12 août 2025 les dernières avancées en matière d'information sur le pollen. À cette occasion, au Pavillon suisse, on a pu suivre entre autres la concentration de pollen en temps réel mesurée par l'Institut national de métrologie du Japon (NMIJ) à Tsukuba. Parmi la septantaine de candidatures arrivées des quatre coins de la Suisse, l'équipe formée de METAS et de MétéoSuisse a été sélectionnée dans la section «Life» (sciences de la vie, formation, santé et nutrition). Elle a ainsi pu être l'une de sept représentantes de la Suisse et de la suissitude dans cette catégorie.

# Le succès du laboratoire Débit à la conférence IMEKO

Après avoir participé à la conférence de la Confédération internationale de la mesure (IMEKO) à Hambourg, le laboratoire Débit a publié ses trois présentations, «Comparaison des étalons primaires pour un débit de liquide entre 0.1 µl/min et 10 µl/min», «Étalonnage dimensionnel de venturis à écoulement critique pour petits débits» et «Comparaison des étalons gravimétriques pour les stations d'hydrogène» dans le numéro de mai de *Measurement: Sensors*, une revue évaluée par les pairs qui fait figure de référence en métrologie et qui accompagne la conférence IMEKO.

Liens vers les publications:



Dimensional calibration of small critical flow Venturi nozzles



Comparison of primary standards for liquid flow in the range from 0.1 µl/min to 10 µl/min

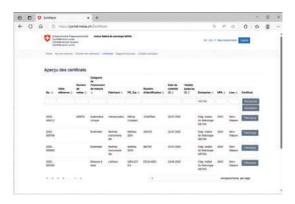


Comparison of gravimetric standards for hydrogen refuelling stations



#### Peter Rohrer

Pour répondre aux exigences grandissantes en matière de sécurité des données et de convivialité, l'Institut fédéral de métrologie METAS a mis en service une nouvelle plateforme Web le 8 avril 2025 (https://portal.metas.ch). Elle permet désormais aux clients d'accéder à leurs certificats d'essai ou d'étalonnage en ligne, rapidement et en toute sécurité.


En effet, la méthode de connexion employée jusqu'à présent, avec un nom d'utilisateur et un mot de passe, ne satisfaisait plus aux normes de sécurité actuelles: si ces informations étaient transmises involontairement, espionnées ou hackées, elles risquaient fortement d'être utilisées à mauvais escient (voir encadré «L'authentification à deux facteurs pour un accès plus sécurisé»).

# Introduction d'un nouveau système de gestion des mandats

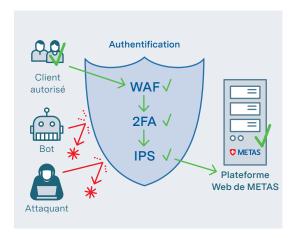
Toujours dans le but d'améliorer l'expérience utilisateur et de faciliter l'accès aux informations et à ses prestations, METAS a doté sa plateforme d'un nouvel atout: début avril également, il a mis en place un nouveau système de gestion des mandats, une solution moderne, sûre et flexible qui lui a permis d'optimiser et d'automatiser ses processus.

#### Se connecter en toute sécurité avec 2FA

Avant, pour obtenir leurs certificats, nos clients recevaient un lien par courriel. En plus de devoir gérer leurs documents eux-mêmes, ils couraient le risque que des tiers ayant accès à ce lien téléchargent les certificats. Or, la nouvelle plateforme de METAS n'autorise que les clients authentifiés à se connecter.



L'aperçu des certificats obtenus permet au client de s'y retrouver facilement. Les documents peuvent être filtrés selon les besoins et téléchargés. Les clients saisissent leur identifiant et leur mot de passe, puis reçoivent un code à usage unique à l'adresse enregistrée sur leur compte.


Cette authentification à deux facteurs, à première vue une complication inutile du processus d'envoi des certificats, renforce en réalité grandement la sécurité des comptes clients (voir l'interview «L'appel à un ami: notre CISO»).

La plateforme garantit donc aux clients de METAS un accès sûr à leurs certificats, leur en offre une vue d'ensemble, assure leur traçabilité.

Grâce à sa nouvelle plateforme web, METAS offre à ses clients titulaires d'un certificat un accès clair, sécurisé, traçable et évolutif à leurs documents signés numériquement.

# L'authentification à deux facteurs pour un accès plus sécurisé

L'authentification à deux facteurs (2FA) renforce la sécurité de la connexion aux applications Web en combinant l'utilisation d'un identifiant et d'un mot de passe avec celle d'un deuxième facteur, à savoir un code à usage unique envoyé par courriel, par SMS ou sur une application d'authentification. Ainsi, l'accès au compte reste protégé même après un vol de mot de passe.



Seuls les utilisateurs autorisés peuvent s'authentifier et accéder à la plateforme. Les attaques de bots ou de cybercriminels sont déjouées par le WAF, la 2FA ou l'IPS.

# L'appel à un ami: notre CISO

Daniel Lussi, le responsable de la sécurité de l'information à METAS (*Chief Information Security Officer,* CISO), nous livre son éclairage sur la cybersécurité de la nouvelle

plateforme.

# Pourquoi l'accès électronique aux certificats a-t-il été modifié?

Daniel Lussi: METAS doit s'assurer que tout certificat soit délivré au bon client. Or le lien de téléchargement que nous utilisions avant ne permettait pas de contrôler l'identité de la personne qui téléchargeait le certificat, contrairement à la connexion avec 2FA.

# Le nouveau système apporte-t-il cette sécurité supplémentaire?

Oui. Un système de connexion nécessitant un identifiant, un mot de passe et un code à usage unique envoyé par courriel – ce qu'on appelle 2FA –, un pare-feu d'application Web (Web Application Firewall, WAF) et un système de prévention des intrusions (Intrusion Prevention System, IPS) protègent efficacement la plateforme contre les cyberattaques.

### Est-ce là la sécurité maximale que nous pouvons

La sécurité n'est pas un état, mais un processus, car les cyberattaques et les cybermenaces évoluent en permanence. C'est pourquoi METAS renforce continuellement les services qu'il offre à ses clients.

